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Abstract. A numerical code solving the ion Vlasov-Fokker-Planck kinetic equation is used to compute the
hydrodynamics of the thermonuclear fuel in inertial confinement fusion pellets. Compared with standard
hydrodynamics calculations, the kinetic results show enhanced ion transport between the core and the
outer part of the target. Consequences are discussed in the case of plastic shells filled with deuterium gas
and cryogenic deuterium-tritium targets envisioned for achieving ignition with megajoule-class lasers.

PACS. 52.25.Fi Transport properties – 52.65.Ff Fokker-Planck and Vlasov equation

1 Introduction — Motivation and aim
of this study

In the numerical simulation [1] of the hydrodynamics
of laser targets of interest for Inertial Confinement Fu-
sion (ICF), ion transport is generally assumed negligible
with respect to electron transport. Ion viscosity is usually
not taken into account, in favor of numerical (“pseudo”)
viscosity. Ion thermal conduction is modeled in an ap-
proximate way, at best through Spitzer-Braginskii formu-
lae [2,3], and non-Maxwellian features in the ion velocity
distributions are always neglected.

However, some authors have investigated how kinetic
effects might affect ion transport, possibly modifying the
hydrodynamics and thermonuclear yield of those systems.
References [4,5] considered from a theoretical point of
view the direct effect of the loss of fast particles in the ion
distribution on the nuclear reaction rate in ICF targets.
They concluded that that mechanism might partially ac-
count for the neutron yield discrepancy found between ex-
periments and one-dimensional (1D) hydrodynamics sim-
ulations, the main part of it being related to implosion
symmetry defects which are not taken into account in
1D calculations.

On the other hand, direct kinetic calculations have
been performed in simplified cases [6,7]. As a rule in those
works, ion transport was found to be much more intense
than usually assumed, with direct consequences on the
nuclear reaction rate as suspected in references [4,5], but
also, more importantly, indirect consequences through a
modification of the target hydrodynamics.

This was also suspected in standard hydrodynamics
simulations of the implosion of microballoons filled with
DT gas where real viscosity was used instead of pseu-
doviscosity [8]. In that work, a lower fuel compression
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and a higher ion temperature were found, and there were
no more well-defined shock fronts. However in that spe-
cific case, in contradiction with the estimates of refer-
ences [4,5], the overall effect on neutron yield was an
increase instead of the decrease needed to account for
experimental results.

This paper presents kinetic numerical simulations, per-
formed with our ion Fokker-Planck code FPion, of the hy-
drodynamics and neutron yield in targets which are more
relevant to ICF due to their larger size and fuel content,
but which are thus much more collisional, which makes
those simulations more difficult. Those targets include, on
one hand, microballoons filled with D2 gas [9], and on
the other hand, targets envisioned for achieving ignition
with next-generation, megajoule-size, lasers such as the
National Ignition Facility (NIF) in the USA [10] and the
Laser Mégajoule (LMJ) in France [11].

In the first case, we wish to examine whether anoma-
lous ion transport might account for the neutron yield
discrepancy between experiments and the 1D numerical
simulation with the code LILAC presented in reference [9].
The explanation usually put forward is the hot-spot/cold-
fuel or fuel/pusher mixing due to Rayleigh-Taylor instabil-
ities during the shell slowing-down stage leading to target
stagnation (see the review papers [12–15] and references
therein). However, it has been argued [16] that that ex-
planation should only apply to neutrons produced during
the compression stage, but not to the first neutron burst
released during the main shock collapse in the centre of
the target (around t = 1.7 ns in Figs. 1 and 2), which
leaves the problem open as far as that part of the neutron
yield curve is concerned.

In the second case, we wish to re-examine the points
raised in the past [4,5] as to the behaviour of ICF targets,
in view of upcoming experiments aimed at demonstrat-
ing ignition on facilities such as the NIF and the LMJ,
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using present-day computational resources which are
vastly larger than those available to the authors of ref-
erences [4,5] who could only resort to analytical order-of-
magnitude estimates.

Those very computing-time-expensive kinetic simula-
tions become realizable today thanks to the improvement
of computers, and to various technical steps to be de-
scribed below. In particular, the kinetic computation is
only applied to the inner part of the target where nu-
clear reactions take place (the “fuel”) but neither to the
surrounding confinement shell (the “pusher”) nor to the
fuel/pusher interface where specific kinetic effects might
occur. Also discussed here is the applicability to systems
of macroscopic size, possibly including highly collisional
regions, of methods whose natural scale length is the par-
ticle collision mean free path.

In Section 2, the underlying physical model is pre-
sented, along with the improvements to the code FPion
implementing that model which were necessary to make
those simulations possible, and caution needed when in-
terpreting the results. In Section 3, a kinetic simulation of
the D2 targets of reference [9] is presented, in view of the
long-standing problem of the neutron yield deficit. In Sec-
tion 4, a simulation of hot-spot formation in an ICF target
is presented, aiming at assessing kinetic effects on the ig-
nition process. Section 5 gives a conclusion and describes
ongoing work on the kinetic treatment of thermonuclear
combustion.

2 Ion Fokker-Planck modeling of ICF target
hydrodynamics

2.1 The physical model

The physical basis of the code FPion is the Vlasov-Fokker-
Planck equation governing the velocity distribution func-
tion in spherical one-dimensional geometry fi(r, vr , v⊥) for
one or more ion species indexed by subscript i, with atomic
mass Ai and charge Zi, where r is the spatial radius,
vr and v⊥ are the radial and tangential components of the
velocity respectively, and azimuthal symmetry around vr

in velocity space holds due to the assumed spherical sym-
metry in configuration space. This equation is expressed
in the units defined in Table 1:
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where Ei is the effective electric field applied to ions of
species i, defined by the following expression:

Ei = −Zi
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∂Pe
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(2)

Table 1. Units defined from reference values of the particle
density n0 and particle thermal energy kBT0. In the text the
word temperature will be used in lieu of reduced thermal energy.

Quantity Unit

density n0 (arbitrary reference value)

thermal energy kBT0 (arbitrary reference value)

time τ0 =
(kBT0)3/2m

1/2
p

4πe4n0

length λ0 = (kBT0/mp)1/2τ0 = (kBT0)2

4πe4n0

velocity v0 = (kBT0/mp)1/2 = λ0/τ0

distribution function f0 = n0/v3
0

first Rosenbluth pot. S0 = n0/v0

second Rosenbluth pot. T0 = n0v0

electric field (Ei) E0 = mpv2
0/λ0 = mpλ0/τ 2

0

heat flux Q0 = n0(kBT0)3/2

m
1/2
p

where

ne =
n∑

j=1

Zjnj ,

Te and Pe are the electron density, temperature and pres-
sure respectively, and ni =

∫
fi(v)d3v is the density of

ions of species i, uiα = (1/ni)
∫

vαfi(v)d3v is the α com-
ponent of their mean velocity (component ur alone be-
ing non-zero from symmetry). In the above expression
for Ei we discarded electron-ion friction terms which intro-
duce additional differential forces when more than one ion
species are present, and also the thermal force arising from
the electron heat flux (see, e.g., [3]). The form (2) for the
electric field arises from the quasineutrality approximation
together with the smallness of the electron mass. Terms
on the r.h.s. of equation (1) are Fokker-Planck terms mod-
eling Coulomb collisions in the ideal plasma limit, domi-
nated by small deviations [17]. The Coulomb logarithms
LogΛab are defined in reference [3]. The electron-ion colli-
sion term involves the following value of the relevant col-
lision time:
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3
√
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3/2
e
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√
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where ε = (me/mp)1/2 ≈ 0.0233 (me and mp are the elec-
tron and proton masses respectively). The ion-ion collision
term is [17]:(
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where Sj and Tj are the so-called Rosenbluth potentials:

Sj = − 1
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∫
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Tj = − 1
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|v − v′| fj(v′)d3v′.



O. Larroche: Kinetic simulations of fuel ion transport in ICF target implosions 133

The above integrals will be computed by solving the
Poisson equations in velocity space: ∆vSj = fj and
∆vTj = Sj with appropriate boundary conditions. We
thus do not assume the Rosenbluth potentials to be
isotropic as is usually done in fast-particle slowing-down
models (see, e.g., [18]). Also energy diffusion is treated in-
stead of using the assumptions usually made in neutron-
transport-like models [19]. The latter hypotheses are
necessary in our case because large distortions in the dis-
tribution are expected, but no highly suprathermal veloc-
ities (see Ref. [6]).

As far as electrons are concerned, only an equation for
the temperature (or, equivalently, the energy density) is
needed since in one-dimensional geometry the density and
velocity are known from the quasineutrality assumption.
The electron energy density We is governed by the follow-
ing equation:
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where κe is Spitzer’s thermal conductivity in the pres-
ence of several ion species (see Appendix of Ref. [20]), the
collision time τej has been defined above and Tj is the
temperature of ions of species j in reduced units:
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·

The electron energy density We and pressure Pe are given
by the equation of state of the electron fluid, which in the
limit of a tenuous plasma reduces to the well-known form:

We(ne, Te) −−−−→
ne→0

3
2
neTe

Pe(ne, Te) −−−−→
ne→0

neTe.

In the present case the electron equation of state will take
into account Fermi degeneracy using the well-known for-
mulae (see, e.g., [21]) expressed below in dimensional, non-
reduced units:

ne = 4π

(
2mekBTe

h2

)3/2

I1/2(z)

We =
3
2
Pe = 4π

(
2mekBTe

h2

)3/2

kBTeI3/2(z)

where h is Planck’s constant and In/2 is the so-called
“Fermi integral”:

In/2(z) =
∫ ∞

0

yn/2

z−1ey + 1
dy.

In equation (3) electron-ion friction and thermal force
terms were neglected, as in equation (1).

For discretization all terms involving Rosenbluth po-
tentials are summed up for each ion species i, including
potentials Sie and Tie modeling the electron collision term
in the limit of electron velocities large with respect to the
ion velocities; the full collision term for species i thus fi-
nally reads:(
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Overall energy conservation in collisions is ensured by as-
signing to electrons the energy lost by ions in the process
described by the above equation.

The radiation coupling term (with subscript “rad”) on
the r.h.s. of equation (3) only includes Bremsstrahlung
losses [22]: (

∂We

∂t

)
rad

= −Prad

where

Prad = 4.14 × 10−4T0(keV)neT
1/2
e

∑
i

niZ
2
i

and T0 is the reference temperature defined in Table 1.

2.2 Improvements to the code

The implementation of the code FPion which numerically
solves equations (1) and (3) has been briefly accounted
for in other papers [6,23]. Here we will describe the mod-
ifications which proved necessary for applying the code
to the implosion of spherical targets of macroscopic size.
The reader who does not feel concerned about the techni-
calities of numerical modeling may want to skip the rest
of this section and go directly to Sections 3 and 4 where
simulation results are discussed.

These improvements were needed because working
with realistic systems where densities, temperatures, and
hence particle collision times span several decades is not
feasible within a reasonable computing time unless special
steps are taken, and this in turn needs some refined under-
standing of the physical processes involved. The following
subsections deal with the interplay between those physical
processes and numerical methods that implement them in
realistic situations.
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2.2.1 Zoning scheme

The original version of the code FPion used a rectangular
numerical grid with equal mesh sizes in the three direc-
tions r, vr and v⊥. This is well adapted to the simulation
of systems where density and temperature contrasts are
not too large, such as the shock-wave problem of refer-
ence [6]. In addition, using such a zoning scheme, when
possible, greatly simplifies the computation of advection
in plane geometry, and even in spherical geometry since it
allows a global description of the distribution using cubic
splines, as was done in reference [7].

In less academic cases, particularly for the implosion
of ICF targets, density and temperature can span several
decades, forbidding the use of a regular grid if computing
time and RAM and disk space are to be kept within real-
istic values. It is thus necessary to use a spatial grid with a
varying mesh size and a velocity grid whose mesh size and
radial offset are adjusted to the local parameters of the
distribution, to take into account variations of the tem-
perature and average velocity over space and time. The
velocity grid at each point in space is otherwise regular.
More specifically we use:

vrj = jδv + v0 for − jmax/2 ≤ j ≤ jmax/2

v⊥k = (k − 1/2)δv for 0 ≤ k ≤ kmax

where δv is the velocity mesh size and v0 is a radial veloc-
ity reference. Cells with k = 0 having a negative perpen-
dicular velocity are introduced to make the application of
the boundary condition on the distribution on the velocity
axis easier: (

∂fi

∂v⊥

)
(v⊥ = 0) = 0.

Cells with k = kmax or j = ±jmax/2 are assigned a van-
ishing distribution value, thus implementing the boundary
condition for the collision term.

The grid defined as above by a set of local values of
the central velocity v0 and mesh size δv is advanced be-
fore each advection step by a relaxation process towards
a state where the central velocity is equal to the hydrody-
namic velocity u and the velocity increment is such that
vth/δv = vmax/vth where vth is the thermal velocity and
vmax = δv × jmax/2. The routine in charge of that relax-
ation process receives values of vth and u taking into ac-
count particles from neighbouring cells which may enter
the cell under consideration due to advection.

2.2.2 Advection

The methods used by various authors for solving the
kinetic equation fall in two broad categories. The first
one includes codes derived from neutron transport the-
ory, using a multigroup or finite-element approach, which
are well-adapted to the slowing-down of fast particles on
a given thermal background, where the collision opera-
tor can be reduced to the sum of a slowing-down term

with no energy diffusion and an energy-conserving angu-
lar scattering term. This approximation is allowed when
the Rosenbluth potentials can be assumed to be isotropic
(see, e.g., [18,19,24,25]). Those methods are not adapted
to our case where there is no such clear separation between
fast particles and a thermal background, so that full non-
linear Fokker-Planck terms should be retained, and the
Rosenbluth potentials should be consistent with the dis-
tribution for angular dependencies to be treated correctly.

The second code category uses splitting schemes work-
ing either directly through shift and interpolation in phase
space of a finite-difference representation of the distri-
bution (see, e.g., [26–28]) or indirectly in a transformed
space (for example Fourier transform [29]). In the latter
category, Vidal [7] performs a shift and interpolation of
a cubic-spline representation of the distribution function
along the three directions r, vr , v⊥ which seems well-
behaved in the whole phase space, but cannot be directly
applied to the particular grid scheme that we use (it can
be easily applied only to a global rectangular grid over
all three directions). We thus developed a hybrid method
which is presently described.

The transformation of the phase-space coordinates r,
vr, v⊥ during one time step δt is computed in the follow-
ing way:

r(t + δt) =
√

r(t)2 + 2r(t)vr(t)δt + v2δt2 (4)

vr(t + δt) =
r(t)vr(t) + v2δt

r(t + δt)
(5)

v⊥(t + δt) =
r(t)v⊥(t)
r(t + δt)

· (6)

The above formulae are applied backwards in time (insert-
ing a negative time increment) for every node of the grid,
and the position with respect to the grid of the starting
point thus defined is computed. The distribution is then
interpolated over the three directions r, vr, v⊥. Since the
velocity grid varies from one space mesh to the next, the
cubic-spline interpolation method cannot be used globally
as in reference [7]. We thus use it in velocity space only
for each space mesh, with the same boundary conditions
as in the work of Vidal et al. [7], namely “not-a-knot” (see
Ref. [30] about splines) in vr and on the upper v⊥ bound-
ary, and a vanishing derivative at v⊥ = 0 (that is midway
between the first two grid points k = 0 and k = 1). The
target point in phase space is chosen at cell centre, that
is with the above notations at vr = vrj , v⊥ = v⊥k and
r = rci = (ri−1 + ri)/2 where ri for i = 0 to imax is the
position of the upper boundary of the ith space mesh. We
then perform a cubic interpolation between neighbouring
space points i and i+1 keeping the values of the distribu-
tion f on nodes fi and fi+1 fixed, as well as the derivative
∂f/∂r there, the latter being estimated by the centred
difference (fi+1 − fi−1)/(rci+1 − rci−1), limited in such a
way that no new extremum of f can appear in cell i, that
is between ri and ri−1.

The simulation is initialized from density, velocity and
temperature profiles (which in the present case are taken
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from a previous hydrodynamics simulation) from which a
Maxwellian ion distribution is calculated in each spatial
mesh. The boundary condition on the outer limit of the
space domain is also a Maxwellian distribution deduced
from temporal profiles of the same hydrodynamic quanti-
ties recorded at the given space-dependent position.

2.2.3 Acceleration

In this stage the part of the Vlasov equation (the l.h.s. of
Eq. (1)) which accounts for the electric field:

∂fi

∂t
+

Ei

Ai

∂fi

∂vr
= 0 (7)

is solved; the effective field Ei is defined by equation (2).
Since in this process the ion energy changes, a conserva-
tive scheme is obtained by computing the work of electron
pressure forces at the same time, as will be described in
more detail in Section 2.2.5 which deals with the treatment
of electrons. Indeed, taking moments over vr and v2

r of
equation (7), we respectively obtain (since the density ni

remains fixed is the acceleration process):

∂

∂t
(Aiui) = Ei

∂
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(Ecri) = niuiEi

where

Ecri =
Ai

2

∫
v2

rfid3v =
1
2
Ainiu

2
i +

1
2
niTir

is the kinetic energy density in the radial direction of parti-
cles of species i. Summing the latter equation over species,
taking into account the expression (2) for the effective elec-
tric field and the quasineutrality condition, leads to:

∂

∂t

∑
i

Ecri = −ue
∂Pe

∂r

which states that the kinetic energy gained by the ions
during acceleration is indeed lost by electrons, being
equal to the opposite of the r.h.s. of equation (9) (see
Sect. 2.2.5).

2.2.4 Fokker-Planck collision term

The numerical methods for advancing the Fokker-Planck
collision term are described in detail in reference [23], and
since that part of the code was only slightly modified we
will only give a broad outline of it here.

The Fokker-Planck operator is a diffusion term in ve-
locity space (hence formally two-dimensional in the pre-
sent case), which is treated by an alternate-direction imp-
licit method [31]. Since the diffusion tensor itself linearly
depends on the distribution through the Rosenbluth po-
tentials, we perform an iterative resolution which leads

to a formally time-centred scheme. The calculation of the
Rosenbluth potentials requires to solve two Poisson equa-
tions in velocity space with non-vanishing boundary con-
ditions. However, we recover a vanishing Dirichlet bound-
ary condition by first computing an explicit approximate
value for the potentials deduced from their multipolar ex-
pansion [32], the solution of the Poisson equations being
performed only for the residual part of the potentials.

The recent developments which were necessary for im-
plosion simulations are described in more detail below.

Time step adaptation and acceleration of electron colli-
sions. For accuracy reasons, since the scheme is not purely
implicit and is not well-behaved when the time step δt be-
comes greater than the collision time, the collision step is
sub-cycled on a time step δt0 close to the smallest colli-
sion time encountered in the distribution, which a priori
leads to Nc = δt/δt0 sub-iterations. At the end of ev-
ery sub-iteration, the distribution variation is examined,
and if it is found to be less than a prescribed rate the sub-
cycling loop is interrupted, assuming that the distribution
has come close to equilibrium. This is expected to occur
in the simulation of realistic systems where the calcula-
tion is focussed on kinetic effects in moderately collisional
regions, while in other parts of the computational domain
very collisional regions are found, where one only wants to
recover thermodynamic equilibrium wasting as little com-
puting time as possible.

The application of the latter idea is complicated by the
existence of several, possibly very different, collisional time
scales. For definiteness, we will assume that there are es-
sentially two collision frequencies, namely an ion collision
frequency ωi and an electron-ion collision frequency ωe,
a priori with ωe � ωi. To treat ion collisions the time
step δt will be split into Nci sub-iterations over a time
δt0 = δt/Nci (which is chosen to be of the order of 1/ωi),
and the sub-iteration loop will possibly be interrupted af-
ter N < Nci cycles. Then, if nothing else is done the
electron collision efficiency will hence be cut down by a
factor N/Nci.

To correctly account for electron-ion collisions in spite
of a reduced number of sub-iterations, the corresponding
collision term (and thus the frequency ωe) must be mul-
tiplied by an acceleration factor to advance the computa-
tion of electron collisions as much as possible in the first
sub-iterations. We can then be in one of two cases:

– either ωe < 1/δt, and ωe can be multiplied by a fac-
tor δt/δt0, which completes the calculation of electron
collisions in Nce = 1 sub-iteration while keeping the
per-iteration variation rate δt0 × (δt/δt0)ωe less than
1 for this term;

– or 1/δt0 > ωe > 1/δt (δt0 is computed in such a way
that the first inequality is always satisfied), in which
case the acceleration factor must not exceed 1/(ωeδt0)
to keep the per-iteration variation rate below 1, and
then a priori Nce = ωeδt sub-iterations are needed to
fully account for electron collisions. However we can
then use the same criterion on the relative variation of
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the distribution to stop sub-cycling as in the case of
ion collisions.

To summarize, in practice we first compute the num-
bers of iterations needed by the electron and ion collision
terms, respectively:

Nce = 1 + E (ωeδt)

and
Nci = 1 + E (max(ωi, ωe)δt)

where E(x) stands for the integer part of x, then the sub-
cycle time step δt0 and the acceleration factor α:

δt0 = δt/Nci and α =
Nci

Nce

and the electron collision frequency is made to vanish after
Nce sub-iterations.

BGK collisions and instantaneous thermalization. In va-
rious cases, it can be useful to have a simpler collision
term available. We thus implemented, in addition of the
full Fokker-Planck term, a multispecies Bhatnagar-Gross-
Krook collision term [33] which also accounts for electron-
ion collisions, following reference [34].

When ion collision times are very small, one can even
go beyond that and merely replace the ion-ion collision
term with an instantaneous thermalization of the distribu-
tion with velocity and temperature values corresponding
to a complete relaxation to equilibrium.

2.2.5 Electron treatment

Equation (3) for the electron temperature, which we will
re-state in the more compact form:

∂We

∂t
+ div (ueWe) + Pedivue + divQe =(

∂We

∂t

)
ei

+
(

∂We

∂t

)
rad

(8)

accounts for several mechanisms affecting the electron
temperature, namely, internal energy convection by the
velocity field ue, the work of electron pressure forces dur-
ing that convection and thermal conduction through the
heat flux Qe. On the r.h.s. are terms accounting for the
collisional energy exchange with ions and energy exchange
with radiation. Each of those mechanisms will be treated
in turn, together with its counterpart from the point of
view of the ions, which more readily leads to a globally
energy-conserving scheme. It should be noticed right now
that the collisional heating term is automatically taken
into account in the kinetic treatment of the collisions un-
dergone by the ions, as described in Section 2.1.

Electron convection. The convective part of the electron
treatment, corresponding to the first part of equation (8)
for the energy density:

(
∂We

∂t

)
conv

+ div (ueWe) = 0

is treated in the ion advection routine, using the velocity
field ue deduced from the ion velocities computed in that
routine for the convection of the initial density We(ne, Te),
the updated value of the temperature being obtained af-
ter convection through the equation of state from the up-
dated energy density and the updated number density ne

deduced from the ion densities just computed. This is also
where the electron temperature value on the right edge of
the space domain is imposed in the case of a boundary
condition deduced from an externally fixed thermal equi-
librium.

Work of the pressure and electric forces. The work of
the pressure and electric forces is modeled by the second
part of equation (8):

(
∂We

∂t

)
pdv

+ Pedivue = 0

which can be set into the form of an inhomogeneous con-
servation equation:

(
∂We

∂t

)
pdv

+ div(uePe) = ue
∂Pe

∂r
· (9)

In that alternate form, the second term on the l.h.s. ac-
counts for the power per unit volume of electron pressure
forces exerted on the ends of a volume element of thickness
r′ − r = δr and cross-section S(r):

−div(uePe) = lim
r′→r

S(r)Pe(r)ue(r) − S(r′)Pe(r′)ue(r′)
S(r)δr

·

The term on the r.h.s. is the power transferred to electrons
per unit volume by the electric field which, neglecting fric-
tion corrections, reads (see Eq. (2)):

E = − 1
ne

∂Pe

∂r
·

To ensure overall energy conservation, it is thus advis-
able to treat that part of the electron equation in its sec-
ond form (9) together with ion acceleration by the electric
field, assigning the kinetic energy lost by the ions in that
process to the electron thermal energy (which completes
the treatment of the electric term on the r.h.s. of Eq. (9)),
using the divergence form of the pressure force term (sec-
ond term on the l.h.s. of Eq. (9)).

Electron thermal conduction. The third part of the elec-
tron equation (8):

(
∂We

∂t

)
cond

+ divQe =
(

∂We

∂t

)
rad
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takes into account thermal conduction and radiative los-
ses. It will be treated using a standard heat equation solv-
ing module, with Spitzer’s thermal conductivity [2] and
a Dirichlet boundary condition based on the pre-existing
temperature values in the boundary cells. In spherical ge-
ometry, since the cell section S(r) vanishes at the centre,
this automatically yields the required vanishing heat flux
condition there.

2.2.6 Diagnostics

The distribution function computed by FPion is periodi-
cally recorded on disk files from which various quantities
can then be calculated in a post-processing stage, such as
the parallel distribution function (integrated over v⊥) as
a function of r and vr, spatial profiles of moments of or-
der 0 to 3 of the distribution, particularly temperatures
and pressures along the longitudinal and transverse direc-
tions leading to the distribution anisotropy, the heat fluxes
corresponding to the longitudinal and transverse degrees
of freedom and the ratios of those fluxes to the corre-
sponding free-streaming flux. The following definition is
used of the free-streaming heat flux for a particle species
with mass m, temperature T , and density n:

QFS = nvthkBT =
n(kBT )3/2

m1/2
·

Hence the electron and ion free-streaming fluxes respec-
tively read, in reduced units:

QeFS = ne
T 3/2

e

ε

QiFS = ni
T

3/2
i

A1/2

in terms of the heat flux unit Q0 defined in Table 1.
The post-processing also includes the calculation of the

rate of the nuclear reactions of interest in the cases un-
der study, namely, the reaction D + D → n + 3He in the
case of the D2-filled capsules of reference [9], and the re-
action D + T → n + 4He for the LMJ/NIF targets. Those
rates are computed either using the Maxwellian reactiv-
ity deduced from the ion temperature and density values
recorded in the simulation, or by direct integration against
the full ion distribution function, using in both cases the
cross-section parametrizations of reference [35]. This al-
lows a discrimination to be made between the direct ef-
fect on reactivity of modifications in the shape of the ion
distribution function and indirect effects due to changes
in the ion density and temperature.

2.3 Proper usage of the code and interpretation
of the results

2.3.1 About boundary conditions

The general principle of the simulations to be described
below is to start from an initial condition based on a pre-
vious hydrodynamics calculation, and perform a kinetic

computation of the behaviour of the fuel with a bound-
ary condition corresponding to the hydrodynamic quan-
tities recorded as a function of time on the fuel/pusher
interface in the hydrodynamics calculation. The kinetic
boundary condition imposes the ingoing part of the local
Maxwellian on the boundary while outgoing particles are
free. This procedure accounts neither for a possible inter-
diffusion of the fuel and pusher particles nor for the heat
transport across the fuel/pusher interface which might be
important, as discussed in reference [7]. However, it will
be checked that in the case of the more collisional tar-
gets treated in this work, as opposed to the simulations
of reference [7], for most of the implosion duration the
computed distribution on the boundary remains close to
the local Maxwellian, which eliminates the uncertainties
related to the modeling of heat transport on the boundary
which were a problem in interpreting the results of that
work.

2.3.2 About the time step

Although there is formally no CFL-like constraint on the
time step, one might still ask whether particles can be
safely advected over distances larger than their collision
mean free path during one advection step, because due
to the splitting scheme retained, collisions are effectively
turned off during the advection step. The region of velocity
space where that constraint is the most restrictive is the
thermal particle region, taking into account the velocity
dependency of the Coulomb collision mean free path. For
those particles, the validity condition is expected to be of
the form δt < τi where τi is a typical collision time. This
is far too restrictive in strongly collisional regions where
the distribution is close to equilibrium but the time step
is much larger than the collision time; in those regions it
would be desirable to use a reasonably large value of the
time step, without taking the above constraint into ac-
count. We will presently show that this is indeed possible.

Leaving aside the acceleration term proportional to the
electric field for the sake of the present discussion, the
Fokker-Planck equation to be solved reads:

∂f

∂t
+ vx

∂f

∂x
=

(
∂f

∂t

)
coll

· (10)

The first three moments of this equation are obtained by
multiplying by 1, vx and v2 and integrating over v, and
lead to the usual hydrodynamics equations:

∂n

∂t
+

∂

∂x
(nu) = 0

∂u

∂t
+ u

∂u

∂x
+

1
mn

∂Px

∂x
= 0

3
2

(
∂P

∂t
+ u

∂P

∂x

)
+

5P

2
∂u

∂x
+ δP

∂u

∂x
+

∂Q

∂x
= 0

where m is the particle mass, n, u and Px are the fluid
density, velocity and longitudinal pressure respectively,
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P = (Px + 2P⊥)/3 is the isotropic part of the pressure,
δP = Px − P is the pressure anisotropy and Q is the
heat flux. The r.h.s. of those equations vanishes due to the
properties of the collision term, which conserves mass, mo-
mentum and energy exactly. An equation for the pressure
anisotropy is found by integrating equation (10) over v2

x

and v2
⊥ separately and subtracting:

3
2

(
∂δP

∂t
+ u

∂δP

∂x

)
+ 2P

∂u

∂x
+

7
2
δP

∂u

∂x
+

∂δQ

∂x
=

3
2

(
∂δP

∂t

)
coll

(11)

where

δQ = m

∫
(vx − u)

(
(vx − u)2 − 1

2
v2
⊥

)
fd3v.

In the case of strongly collisional systems evolving on a
slow (hydrodynamic) time scale, equation (11) tells us
that the (small) pressure anisotropy value arises mainly
from the balance between the collisionless creation term
2P (∂u/∂x) on the l.h.s. and the collisional damping term
on the r.h.s. When the kinetic equation is solved using
a split-step scheme, during the advection stage only col-
lisionless terms are taken into account and thus a non-
physical pressure anisotropy δP will appear over a time
step δt, the order of magnitude of which, according to
equation (11), can be as high as

δP ≈ Pvthδt

Lg

if velocities of the order of the thermal velocity vth are
present, and Lg is the gradient scalelength of the problem.
This spurious viscous pressure will in turn perturb the
hydrodynamics; the relative error made in the velocity u
can be estimated from the second hydrodynamics equation
above to be of order:

δu

u
≈ δPδt

mnLgu
≈

(
vthδt

Lg

)2

·

After the advection stage, the collision stage will bring the
distribution back to its original quasi-Maxwellian state,
and accordingly the spurious pressure anisotropy intro-
duced during the advection stage will disappear, leav-
ing however a perturbation of the velocity field of or-
der (vthδt/Lg)2. We can thus conclude that the condition
for the kinetic calculation to remain valid in the case of
strongly collisional systems is not the very restrictive con-
dition δt � τi but instead

δt � Lg

vth
·

Since for numerical accuracy we choose a space step δx
much smaller than the gradient scalelength Lg, this con-
dition is then not more restrictive than a CFL-type con-
dition vthδt < δx.

A problem still remains on interfaces between strongly
and weakly collisional regions, such as the hot-spot/dense-
fuel interface in ICF targets, since in those regions there
can be both a time step larger than the smallest value of
the collision time and a short gradient length. However in
those regions the meaningful length is not the local value
of the thermal mean free path, but rather the slowing-
down distance for particles from the hot zone through
collisions with particles in the cold and dense zone. In
a transition layer where the pressure balance relationship
nv2

th = constant holds, such as the hot-spot/dense-fuel in-
terface in an ICF target [12], the local collision mean free
path λc ≈ v4

th/n goes like 1/n3 moving from one zone to
the other, whereas the mean free path for hot particles
colliding onto local thermal particles goes like 1/n only,
so that the corresponding time step constraint is much
less stringent.

In any case using too large a value for δt will only
result in an exaggeration of the non-collisional features of
the distribution, for example overestimating the ion heat
flux and pressure anisotropy. But the excess values can
be detected because they will tend to scale linearly with
the time step. It is thus necessary to check by running
several calculations with different time step values that
the observed heat fluxes and temperature anisotropy do
not strongly depend on the time step.

Conversely, in weakly collisional regions (for example
in the central part of the target where shock-heated tenu-
ous gas is standing) one should expect distributions made
out of two parts, namely, a cold component consisting of
the gas initially present in the target core, and a hot com-
ponent arising from fast particle advection from zones pre-
viously heated by the main shock. This feature should not
be mistaken for a numerical artefact, taking into account
the collision time in that region, but care must be taken
that it is not exaggerated by the numerical diffusion of the
advection scheme, which in addition could lead to numer-
ical problems if the cold component becomes too much
localized and peaked.

3 Simulation and results for the implosion
of a deuterium gas-filled target

We performed a kinetic simulation of the implosion of a
20 µm thick, 914 µm inner diameter CH shell filled with
15 atm of D2 gas at room temperature, irradiated by a
square laser pulse 1 ns in duration. The reference hy-
drodynamics simulation of that target was done with the
code LILAC and is described in reference [9]. As explained
in Section 2.3, the initial condition was calculated from
the hydrodynamic profiles at time 500 ps, that is near
the main shock outbreak into the fuel (see Fig. 1). The
boundary condition on the fuel outer surface was deduced
from the hydrodynamic state of the plasma in the last fuel
cell of the LILAC simulation in the course of time. The
numerical grid used 200 cells of equal thickness in space
and 129 × 64 cells in velocity space (vr , v⊥). A 1 ps time
step was used. Differences between the hydrodynamic and
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Fig. 1. Space-time diagram of the fuel in the hydrodynamic
simulation of a D2-filled CH shell, starting at the time of the
main shock breakout into the fuel t ≈ 500 ps.
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Fig. 2. The D(D,n)3He neutron production rate is plotted
as a function of time, as measured in the experiment (exp)
and as computed in the 1D LILAC hydrodynamics simulation
(hydro). To cope with timing uncertainties in both the exper-
imental results and the fluid simulation (due to the choice of
the heat conduction flux limiter) the time origins of the curves
were adjusted so that the absolute maximum of the yield oc-
curs at the same time.

Fokker-Planck simulations are observed in three successive
stages, as described in the following sections.

3.1 Shock propagation stage

During convergence of the main shock towards the centre
of the target, a precursor can be observed in the Fokker-
Planck simulation ahead of the imploding D2. The shock
structure is also broader and more complex than in the hy-
drodynamics simulation (see Fig. 3). In particular a large
ion pressure anisotropy shows up inside the shock front.
The shock width can be checked to be of the expected or-
der of magnitude by estimating the slowing-down distance
for ions from the central part of the target entering the
shock front:

λii =
(mDv2

impl)
2

4πe4nDLogΛii
≈ 20 µm

inserting figures corresponding to Figure 3, namely an im-
plosion velocity vimpl ≈ 5 × 107 cm/s and an ion density
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Fig. 3. Profiles of the density (n) and velocity (u) (top), of
the electron (Te) and parallel (Ti‖), perpendicular (Ti⊥) and
total (Ti) ion temperatures (bottom) in the fuel at t = 1460 ps
in a D2 target implosion; left: fluid simulation results, right:
kinetic simulation results.

nD ≈ 4 × 1021 cm−3 in the region downstream from the
shock front. The detailed features of the shock structure
are of course not correctly captured in the hydrodynamics
simulation where the ion-shock width is artificially fixed to
a few meshes by pseudoviscosity, and only the ion-electron
temperature decoupling and relaxation can be rendered.

3.2 Shock convergence

When the main shock reaches the target centre, due to
the shock precursor the Fokker-Planck simulation behaves
quite differently from the fluid calculation (see Fig. 4):
while the latter displays a sharp reflected shock front fol-
lowed by a stagnating region where the density and tem-
perature are high (n = 5 × 1022 cm−3 and Ti = 13 keV
at t = 1560 ps), in the kinetic calculation the profiles are
much smoother and compression goes on more gently in
the centre: the ion temperature reaches a rather flat peak
value around 6 keV while the density increases steadily
from 1 to 6 × 1022 cm−3 between 1560 and 1700 ps. The
ion temperature is lower in the centre of the target but
higher in the outer part (for r � 20 µm).

3.3 Compression stage

At later times (see Figs. 5 and 6), the density and tem-
perature profiles for either type of calculation come closer
to each other, although at late times the temperature
tends to remain higher in the kinetic simulation: the cen-
tral hotter and denser region which can be seen in the
fluid simulation shortly after the main shock convergence
(see Fig. 4) has disappeared by t = 1700 ps (see Fig. 5).
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Fig. 4. Profiles of the density (n) and velocity (u) (top), of the
electron (Te) and parallel (Ti‖), perpendicular (Ti⊥) and total
(Ti) ion temperatures (middle) and of the D(D, n)3He reaction
rate (bottom) in the fuel at t = 1560 ps in a D2 target im-
plosion; left: fluid simulation results, right: kinetic simulation
results. In the kinetic case the reactivity is calculated using the
exact distribution (solid lines) or the equivalent Maxwellian
(dashed lines). Curves with the “int.” label are plots of the
reaction rate integrated over volume from the target centre.

This is particularly true in the case of the ion temperature:
the electron-ion temperature decoupling is stronger in the
kinetic simulation. At t = 1900 ps, which is shortly be-
fore maximal compression and just before the peak of the
neutron yield, the hydrodynamic profiles are very close to
each other, the main difference lying in a slightly higher
ion temperature in the kinetic results, leading to a higher
neutron yield (see Fig. 6). After stagnation, the expansion
stage starts, in which the ion temperature is slightly lower
in the Fokker-Planck simulation.

3.4 Neutron yield

The neutron production rate ∂YN/∂t for the reaction
D + D → n + 3He calculated as described in Section 2.2.6
is shown in Figure 7 as a function of time for both sim-
ulations. The neutron yield decrease due to the kinetic
behaviour of the ions predicted in references [4,5] is seen
to occur only in the early part of the first neutron burst
arising from the main shock convergence. Later on, the
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Fig. 5. Profiles of the density (n) and velocity (u) (top), of the
electron (Te) and parallel (Ti‖), perpendicular (Ti⊥) and total
(Ti) ion temperatures (middle) and of the D(D, n)3He reaction
rate (bottom) in the fuel at t = 1700 ps in a D2 target im-
plosion; left: fluid simulation results, right: kinetic simulation
results. In the kinetic case the reactivity is calculated using the
exact distribution (solid lines) or the equivalent Maxwellian
(dashed lines). Curves with the “int.” label are plots of the
reaction rate integrated over volume from the target centre.

reaction rate of the kinetic simulation catches up with the
fluid simulation rate and remains higher all over the com-
pression stage (the stagnation of the pusher takes place
around t = 2050 ps). During the subsequent expansion
phase the calculated rates are essentially equal, with a
slightly lower Fokker-Planck value due to the slightly lower
ion temperature.

Figure 8 displays profiles of the reaction rate per unit
radius ∂2YN/∂r∂t at the same times as above for the fluid
and kinetic calculations. These plots show which parts
of the target contribute the most to neutron production,
taking into account spherical geometry effects in addition
to the variations of the local reactivity. We notice that
although the reaction rate per unit volume is higher at
or near the target centre (see the reactivity profiles in
Figs. 4, 5 and 6), most of the yield comes from a shell
which lies farther and farther away from the centre as
time elapses. Due to this feature the neutron rate might
be affected by Rayleigh-Taylor instabilities during the late
part of the shock yield (see the profiles at t = 1700 ps in
Fig. 8).
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Fig. 6. Profiles of the density (n) and velocity (u) (top), of
the electron (Te) and ion (Ti) temperatures (middle) and of the
D(D, n)3He reaction rate (bottom) in the fuel at t = 1900 ps
in a D2 target implosion; left: fluid simulation results, right:
kinetic simulation results. In the kinetic case the reactivity
is calculated using the exact distribution (solid lines) or the
equivalent Maxwellian (dashed lines). Curves with the “int.”
label are plots of the reaction rate integrated over volume from
the target centre.

4 Simulation and results for the implosion
of an ICF ignition target

We started from a 1D spherical fluid simulation of the
implosion of an ICF target with parameters typical of ig-
nition capsules designed for the LMJ laser [11], namely
0.3 mg of cryogenic DT deposited on the inner surface of
a CH shell of 1 mm (inner) radius. The space-time dia-
gram of that simulation is displayed in Figure 9. Nuclear
reactions were not taken into account to focus more specif-
ically on the hydrodynamics of hot-spot formation during
the implosion process. Nuclear reactivity will thus be cal-
culated only as a post-processing diagnostics tool in the
comparison of the fluid and kinetic simulations.

The kinetic calculation was started at t = 17 ns, when
the main converging shock reaches the centre of the tar-
get. The boundary condition was taken from the hydro-
dynamic quantities recorded on the fuel/pusher interface
(see Fig. 9) in the fluid simulation as a function of time.
To treat in a satisfactory way both the dense region where
the fluid simulation grid is the finest and the central zone
where it is rather coarse, a spatial grid with a geometri-
cally varying mesh size was used in the kinetic calculation,
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Fig. 7. Volume-integrated rate of the D(D, n)3He reaction as
a function of time recorded in the kinetic (FP) and hydrody-
namics (hydro) simulations. In the kinetic case the reactivity
is calculated using the exact distribution (solid line) or the
equivalent Maxwellian (dashed line).
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with a ratio of 0.95 starting from the pusher/fuel inter-
face. Using the same number of cells (62) in the fuel as in
the fluid calculation, the mesh size δr was thus decreasing
from 20 µm near the centre to less than a micron near
the outer boundary. The velocity space (vr, v⊥) was dis-
cretized into 129 × 64 cells. Three runs were performed
with time-step values of 0.25, 0.5 and 1 ps, to survey spu-
rious non-collisional effects in very collisional regions as
discussed in Section 2.3.2. Unless otherwise specified, all
results shown in the following pertain to the smallest-time-
step case.

To speed up the calculation, the D and T were not
treated as separate species, but instead a single ion species
with mass number 2.5 was used. This might affect the elec-
tron and ion temperature relaxation rate, since replacing
a set of N ion species with densities ni, mass numbers Ai

and the same charge Z with a single species with a density
equal to the total density n =

∑
ni and a mass number

equal to the mean value A =
∑

niAi/
∑

ni, neglecting
the Coulomb logarithm variation, amounts to modifying
the collisional relaxation term on the r.h.s. of equation (3)
by a factor (∑N

i=1 ni

)2

∑N
i=1 niAi

∑N
i=1

ni

Ai

·

In the present case of an equimolar DT mix, that factor
is 0.96, or in other words a 4% reduction. This is a small,
but non-negligible variation with respect to the differences
in the electron-ion temperature decoupling recorded in the
fluid and kinetic simulations. This effect can be corrected
for in the FPion code by dividing the electron-ion colli-
sion rate in equation (3) by the same factor. Obviously
that correction should also be applied to the electron col-
lision term in the ion Fokker-Planck equation, to keep the
total (electron + ion) energy conservation right, but this
is automatically taken into account by the algorithm used
in the code to treat electron-ion collisions.

However, using the above defined correction factor on-
ly leads to hardly noticeable temperature differences in
the simulation. The discrepancies between the tempera-
ture profiles recorded in the fluid and kinetic calculations
can thus not be explained by that effect.

As regards electron thermal conduction, the only effect
of using a single ion species to model the DT mix, since D
and T have the same Z, rests in a modification of the
Coulomb logarithm (see definitions in Ref. [3]) which will
be considered negligible.

The effect of the electric field on each ion species, tak-
ing the first two moments of the kinetic equation (1), can
be written as:

Aini
∂ui

∂t
+ Ainiui

∂ui

∂r
= −niZi

ne

∂Pe

∂r
·

Leaving aside species separation effects which obviously
can only be treated using two different ion species, the
velocity field ui can be assumed not to depend on i
(ui = u ∀i), and hence summing the above equations

over i leads to:

An
∂u

∂t
+ Anu

∂u

∂r
= −∂Pe

∂r

where

n =
∑

i

ni and A =
∑

i niAi∑
i ni

so that the correct dynamics equation for a single species
is recovered, taking into account the definition used for the
mean mass number A, and thus no correction is needed.

Comparing the fluid and kinetic simulation results al-
lows three successive stages to be identified, which will be
described in more detail in the following sections. In the
first, rather short, stage, non-collisional features (ion heat
flux and ion pressure anisotropy) start developing with-
out significant modifications of the plasma flow. Those
features will progressively lead, in a second stage, to mod-
ifications in the main hydrodynamic quantities (density,
velocity, temperature) as compared with the fluid simula-
tion. The third stage is the vicinity of stagnation, which
will be considered to lie between the time of the ion tem-
perature peak in the centre of the target and the time of
the maximum value of the overall fuel ρr.

4.1 First stage — Setup of non-collisional features

In this first stage, lasting approximately 100 ps after the
beginning of the kinetic simulation (i.e. up to t = 17.1 ns
after the beginning of the implosion), a high ion heat
flux and a large ion pressure anisotropy build up in the
less dense region of the system, with otherwise no no-
ticeable modification of the density and velocity profiles.
More specifically shock convergence in the centre occurs
in much the same conditions as in the fluid simulation.
This is displayed in Figure 10 for the main hydrodynamic
quantities (density, velocity and parallel and perpendicu-
lar temperatures) and in Figure 11 for the heat flux. It
can be noticed that the ion heat flux calculated by FPion
is of the same order of magnitude as the electron heat
flux in the central part of the target; such values cannot
be reproduced by a classical model such as a flux-limited
Spitzer conductivity. On one hand, the ratio of the heat
flux to the free-streaming flux reaches very high values
(see Fig. 11), and on the other hand those values are re-
lated to large values of the ion temperature anisotropy in
the region considered (see Fig. 10).

The high ion heat flux tends to smooth out the peak
of the ion temperature Ti observed in the target centre,
and in addition the electron temperature is slightly lower
than in the fluid simulation, which cannot be explained
by the modeling of the collisional processes at work (see
the above discussion).

The quick transition which takes place during this first
stage of the kinetic simulation to a regime with markedly
non-collisional features possibly indicates that the kinetic
calculation should be started earlier in the implosion pro-
cess, since those effects might have non-negligible conse-
quences during the initial DT acceleration phase, before
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the main shock convergence. This would make the com-
putation much more costly in terms of computing time,
and has thus not been attempted so far, since treating the
shock break-out from the dense DT layer implies start-
ing the computation before t = 14 ns (see Fig. 9), which,
at the very least, amounts to a four-fold increase in com-
puting time, not even taking into account the greatly in-
creased collisionality in the dense and cold DT at that
time.

4.2 Second stage — Non-collisional effects
on implosion

In this second stage which extends up to the vicinity of
stagnation, the features which emerged in the previous
stage become progressively stronger and their effects on
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in the fuel at t = 17.65 ns in the kinetic simulation of a DT
ignition target implosion. The time step used in this case was
δt = 0.25 ps.

the flow accumulate. This is evidenced by the profiles of
hydrodynamic quantities at time t = 17.65 ns (which is
the time of maximum ion temperature in the centre of the
target in the kinetic simulation). Figure 12 displays the
main hydrodynamic quantities (density, velocity, parallel
and perpendicular temperatures) in both simulations, and
Figure 13 the heat fluxes at the same time, taken from the
kinetic simulation with the smallest time step δt = 0.25 ps.
The electron and ion temperatures are noticeably lower in
the kinetic case due to the large outbound ion heat flux.
The ion temperature is now almost isotropic (see Fig. 12),
and the ion heat flux has come down to more reasonable
values with respect to the electron heat flux, although the
heat-flux/free-streaming-flux ratio is still much larger for
the ions than for the electrons (see Fig. 13). The com-
pression zone which will ultimately become the dense fuel
shell at stagnation (the negative velocity gradient region
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about r = 60−80 µm in Fig. 12) now lies closer to the
target centre.

4.3 Third stage — Vicinity of stagnation

In the fluid simulation at t = 17.9 ns, the density reaches
its maximum, the densest part of the fuel is stagnating
(velocity u ≈ 0) while expanding on both sides, and 30 ps
later the reflected shock has swept over the whole fuel,
reversing the velocity of the pusher/fuel interface. At the
same time the DT ρr goes through a smooth maximum of
about 2.2 g/cm2. Figure 14 displays profiles of the hydro-
dynamic quantities in the fluid and kinetic simulations at
t = 17.9 ns. Figure 15 shows the DT ρr profiles in both
simulations at the same time.

Although the density profile is different in the kinetic
simulation, the DT ρr profile is very similar, both in terms
of its maximum value (which is the full fuel ρr) and of the
hot-spot ρr. On the opposite, the maximum ion tempera-
ture reached in the hot spot is noticeably lower than in the
fluid calculation, while the density there is higher, yielding
an almost equal pressure. This points to an increased rate
of ablation of the cold fuel by the large ion heat flux from
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Fig. 15. Profile of the fuel ρr integrated from the centre
at t = 17.9 ns in a DT ignition target implosion; left: fluid
simulation results, right: kinetic simulation results.

the hot spot, although from the hot-spot temperature de-
crease alone the opposite should have been expected.

Let us finally discuss the effect of the modifications
of the hydrodynamics on target performance. The rate of
the thermonuclear reaction D + T → n + α calculated as
described in Section 2.2.6 at the end of the kinetic sim-
ulation is shown in Figure 14. In this case only values
for the equivalent Maxwellian distribution were computed
since independent distribution functions for D and T were
not available. It can be noticed that, due to the lower ion
temperature in the hot spot, both the local reaction rate
(number of reactions per unit volume per second) and the
volume-integrated rate (number of reactions per second)
over the whole fuel are lower in the kinetic simulation. This
should reduce the safety margin of the ignition process, al-
though from the fuel ρr alone the final yield might not be
reduced, at least from a rough estimate using formula (9)
of reference [12] giving the final reaction fraction Φ as a
function of DT ρr in g/cm2:

Φ ≈ ρr

ρr + 6
·

In summary the overall consequences of kinetic effects
on burn seem contradictory. On one hand, the ignition
threshold is expected to be raised since a lower reaction
rate is obtained in the hot spot, but on the other hand
the unmodified target ρr should preserve the overall burn
fraction. This might point to the need of re-designing the
target dimensions or the temporal power profile of the
laser pulse used to drive the implosion, to increase the
hot-spot efficiency while trying to keep the highest possi-
ble fuel ρr.

4.4 Effect of the time step on non-collisional features

As discussed in Section 2.3.2, it is necessary to check that
the non-collisional features (ion heat flux and pressure
anisotropy) emerging in the kinetic simulation are not just
artefacts due to the time step being much greater than the
collision time (at least in the colder and denser parts of the
target). It is not possible in practice to run a reference case
with a time step of the same order of the smallest collision
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time encountered in the system, but at least it is neces-
sary to check that the non-collisional features observed do
not depend linearly on the time step, which would identify
them as entirely numerical. For that purpose, three cases
were run with different time step values δt = 0.25, 0.5 and
1 ps, and otherwise identical. The ion heat flux profiles
obtained at time t = 17.75 ns in the three cases are dis-
played in Figure 16. The maximum variation of the heat
flux and its ratio to the free-streaming flux do not exceed
a factor 2 (in the denser region) while the time step is var-
ied by a factor 4. It can be thus assumed that the order
of magnitude of the observed fluxes is right, even though
the value obtained in the denser part of the fuel is not
accurate. Let us also notice that in the mildly collisional
region where the absolute maximum of the heat flux is
recorded, the latter scales in the opposite way with the
time step, but this is now a physical effect due to different
temperature profiles.

5 Summary and discussion

Significant improvements were made to the ion Fokker-
Planck code FPion, which now allow the simulation of
systems of macroscopic size, beyond the more academic
cases studied in the past, such as the structure of plasma
shock-wave fronts [6]. That new version of the code was
applied to the laser implosion of D2-gas-filled capsules as
well as the problem of the hot-spot formation in ICF tar-
gets such as those which will be used with next-generation
megajoule-size lasers. Detailed comparisons with existing
hydrodynamics simulations of the same targets were per-
formed, using various diagnostics including post-processed
nuclear reactivities (in the work done so far nuclear re-
actions were not taken into account “in line” in the
simulations).

The main consequence of properly taking into account
the weaker collisionality of the plasma in the central part
of those targets through a fully kinetic calculation is an
increased thermal energy transfer between the target core
and its surroundings during the implosion, leading to a
modified ion temperature.

In the case of D2-gas targets, this leads to a decrease
of the maximum ion temperature at the time of the main

shock collapse in the centre, and conversely a higher tem-
perature during the ensuing compression stage. As a con-
sequence, the shock-related neutron yield is lowered, which
brings the simulation results in better agreement with ex-
periments as regards that part of the neutron curve, but
the compression yield is slightly increased, which makes
the comparison with experiment even worse there. From
the observed location of the main part of the yield in-
side the target, if the explanation of that discrepancy by
hydrodynamic instabilities is to be retained, then this im-
plies that the corresponding fuel/pusher mix should affect
most of the target volume.

In the case of ignition DT targets, those effects lead to
a stronger cooling of the target core, with a comparable
pressure in the fuel due to the increased rate of ablation
of the dense layer by the heat flux from the hot spot. Al-
though the details of the density profile at stagnation are
different, no significant change of the hot-spot or overall
target ρr is found. Consequences on ignition are, on one
hand, a decreased ignition safety from the lower reaction
rate in the hot spot, but on the other hand no expected
reduction in the final yield of the target. However a more
definite conclusion on the latter point has to wait until
a full kinetic simulation of ignition including an in-line
treatment of nuclear combustion and hot reaction prod-
ucts becomes feasible. An additional effect which could be
investigated with the present version of the code is the
possible D/T species separation which might modify the
hot-spot reactivity.

Some improvements may however be already consid-
ered at this point. Among other things, it might be neces-
sary to start the kinetic simulation earlier before the main
shock convergence since kinetic features build up very soon
after the beginning of the Fokker-Planck calculation (see
Sect. 4.1) and lead to significant modifications of the hy-
drodynamics in the mildly collisional region of the target,
and such effects might occur much earlier in the course of
the implosion process.

A comparison of the evolution of the spatial discretiza-
tion grid during implosion in the fluid and kinetic simu-
lations suggests that the FPion code should be improved
in that respect, for example by implementing some kind
of “quasi-Lagrangian” scheme such as the one used in our
multifluid hydrodynamics code MULTIF [20]. The zoning
scheme used here is well adapted to the earlier part of
the simulation, but not so much near stagnation since the
density peak at that time does not involve the same fuel
layers as in the beginning. Besides, it can be checked that
the total DT mass is not strictly conserved in the kinetic
calculation, due to the specific boundary condition used
which imposes no constraint on outgoing particles. A more
accurate comparison with fluid results might thus need a
mirror-type boundary condition.

From the point of view of the underlying physical
model, it might seem necessary to take into account dense-
plasma effects (beyond electron degeneracy which is in-
cluded in the code in its present state) since the values
of the Coulomb logarithms found are small in the dense
and cold main fuel layer. The Fokker-Planck collision term
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included in FPion is not supposed to remain valid in
such conditions. However in the present case this problem
should be mitigated by the fact that the pusher motion is
taken as is from the fluid simulation with no modification
from the different behaviour of the fuel. This latter feature
of our simulations might be changed in favor of some kind
of hybrid model which would perform a fluid treatment
of most of the system while self-consistently including a
kinetic treatment of the fuel, or dynamically shift to a ki-
netic model in mildly collisional regions in the spirit of
reference [36].

Finally the main part of the work which remains to
be done as regards the investigation of ion-kinetic effects
in ICF target ignition involves the self-consistent treat-
ment of nuclear reactions and combustion, beyond the
simple energy-deposition models implemented in present-
day fluid codes [37]. This demands that ion species with
a much higher temperature be treated together with the
colder imploding plasma in the kinetic code, which implies
an important physical and numerical development effort.

We acknowledge fruitful discussions with J.A. Delettrez and Y.
Saillard, who also kindly provided us with results from their
numerical simulations, on which this work is based.
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